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A Phenomenological Theory of Sintering 
BY J. K. MACKENZIE* AND R. SHUTTLEWORTHt 

H. H. Wdls Physical Laboratory, University of Bristol 

MS. receaved 27th June 1949. 

ABSTR4CT. Sintering occurs when powders are heated to temperatures near their 
melting points. This paper deals with the rapid increase of density during the sintering 
of single substances The increase of density cannot be explained by volume drffusion of 
vacant lattice sites or surface migration of atoms, but must involve macroscopic flow. The 
driving force for this flow is surface tension, and an equation connenting the rate of shear 
strain with the shear stress defines the resistance to deformation. 

The density of a compact is calculated as a function of the time for two different laws of 
deformation, (a) that for a solid with a Newtonian viscosity, and (b) that for a Bingham solid 
which has n yield point and a rate of shear strain proportional to the difference between the 
applied shear Stress and a yield stress. The effect of gas in the pores is calculated in the case 
of the viscous law. 

The theory assumes that the pores are equal spheres and predicts that densification is 
uniform throughout a compact, independently of its shape and size, and suggests that gas 
pressures of a few atmospheres applied to the outside of a compact may appreciably increase 
the rate of sintering. 

Relevant experiments and previous theories are examned critically, and it is shown that 
while the V I S C O U ~  model may explain the sintering of glasses it cannot explain that of metals. 
However, the experimental data can be explained by a model showing a yield point : on 
such a model the interaction of one pore with its neighbours is vital, so that pores in powder 
compacts close and isolated pores do not. 

§ 1. I N T R O D U C T I O N  
HEN powders of metals, ionic crystals, or glasses are heated to tempera- 
tures near to their melting points, the powder particles weld together W and the density of the compact changes : this process is known as sintering. 

Sintering has been used from the earliest times for fabricating solid lumps of 
metals, such as iron or platinum, which could not be melted; today it is still 
used to fabricate materials of high melting point such as tungsten and alumina. 
Since about the middle of the last century it has been possible to melt most 
metals, and although interest in sintering then waned, it has recently increased! 
again because it is sometimes cheaper to press and sinter small awkwardly shaped 
parts than to cast and machine them. In addition, sintering techniques can be 
used to produce special products such as porous bearings and, by the inclusion of 
gas-producing materials in the compacts, expanded glass products. The history 
of sintering has been reviewed by C. S .  Smith (1942). 

Sintering is a process which reduces the surface area of the powder particles, 
and the driving force arises from the excess free energy of the surface of the powder 
over that of the solid material. The fundamental problem of sintering is to 
explain by what mechanisms this reduction of energy occurs. In  this’ paper a 
phenomenological theory of the sintering of single substances is developed ; the 
atomic mechanisms operating remain obscure, but attention is drawn to certain 
basic phenomena which must be explained, and to the necessity for further 
experimental work. The literature dealing with the sintering of metals has been 
reviewed by Rhines (1946) and by Shaler (1949). 

* Now at C S 1.R 0 Dmsion of Tiibophyslcs, Melbourne, Australia. 
f Now at physics Department, Universtty of Illinois, U S.A. 
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At least two processes occur during sintering : (a) the powder particles weld 
together and the pores between them become more nearly spherical, aild ( b )  the 
density of the compact increases. Although these two changes proceed simul- 
taneously and the driving force for both arises from the excess surface free energy 
of the powder over that of the bulk material, they may occur by different 
mechanisms. The main theme of this paper is to explain the remarkably rapid 
increase of density which occurs during sintering. In  $ 2  it is shown that the 
observed increase of density cannot be due to the volume diffusion of vacant 
lattice sites or surface migration of atoms, and that probably both volume diffusion 
and non-uniform flow are responsible for the sphering of the pores. I n  $ 3  it is 
shown that the driving force for sintering is surface tension, and that at  high 
temperatures it is permissible to assume an equation of mechanical state connecting 
the rate of shear strain of the material with the shear stress at constant temperature. 

So that the reader may follow the general trend of the arguments to their final 
conclusion, the mathematical calculation of the density of a compact as a function 
of the time is deferred until 0 5. The calculationzis carried out for two different 
equations of state : ( a )  that for a solid with a Newtonian viscosity, far which the 
rate of shear strain is propwtional to the shear stress, and ( b )  that for a Bingham 
solid which has a yield point and a rate of shear strain proportional to the difference 
between the applied shear stress and the critical shear stress. The effect of gas 
in the pores is considered in $6, and some limitations on the possible atomic 
mechanisms in 7. 

Shaler and others have made certain experiments which were designed to 
test Frenkel's theory that sintering is due t o  viscous flow induced by surface 
tension. In  $4 both the theory and the experiments are examined critically, and 
it is shown that although the viscous hypothesis may explain the sintering of glasses 
it cannot explain the sintering of metals. It is indicated in general terms how all 
the experimental results can be explained if it is supposed that the material shows 
a yield point. -4ttention is drawn to the lack of experimental data concerning 
the mechanical properties of metals at sintering temperatures. 

I n  discussing the work of other authors, the present authors have sometimes 
drawn different conclusions from the original authors, or stated conclusions which 
did not appear in the original paper. -Therefore many matters hare been 
discussed at greater length than might otherwise have been the case. 

In  $ 8 some suggestions are made for experimental work. 

5 2 .  S P H E R I N G  O F  T H E  PORES 
Before proceeding with the main theme it is convenient to show that neither 

volume diffusion of vacant lattice sites nor surface diffusion of atoms can account 
for the observed changes in density, and to discuss the experiments relating to the 
sphering of the pores. 

All the lattice points of a crystal in thermal equilibrium at a finite temperature 
are not occupied by atoms. At the melting point of copper the concentration of 
vacant Iittice sites is about 1,000 times the concentration of atoms in the vapour 
phase. These vacant lattice sites can move through the lattice and are responsible 
for self-diffusion. Just as the equilibrium vapour pressure is greater outside a 
convex surface" than outside a concave surface, so the equilibrium concentration 
of vacant lattice sites is greater inside a concave surface than inside a convex 
surface. 

* A surface is described as concave or convex according to its appearance to an observer situated 
in the vapour phase. 
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Now volume diffusion alone can only change the density of a compact provided 

that vacant lattice sites diffuse from the interior to the outer boundary. This is 
a negligibly slow process: for, in order that pores in the centre of the compact 
should disappear, it is necessary that diffusion should occur over large distances. 
A simple calculation shows that if the excess concentration of vacant lattice sites 
in  copper at 1,000"~. is produced by pores of Ip radius, and diffusion has to take 
glace over a path of 1 mm., then the decrease of linear dimensions due to volume 
diffusion will be only 3 x cm/day ; Kuczynski's experiments (1949) indicate 
that at 1,000" C. surface diffusion is even less effective in transporting material. 
Further, if volume diffusion were responsible for the increase of density, no net 
diffusion to the surface could take place until there were no pores between the 
surface and the point under consideration. Sintering would then occur from the 
surface inwards, and the time of sintering would be a function of the shape and size 
of the compact. This conclusion is the opposite of that drawn in $5 (i) from the 
zheory developed later in this paper, 

On the other hand, although diffusion cannot change the density of a compact 
appreciably, it can move matter over short distances and so change the shape of 
the pores. Diffusion moves atoms from the high-energy convex parts of the surface 
to the lower-energy concave par'ts SO that the pores become more spherical and 
their surface area less. The fdlowing phenomena may be explained in terms of 
a mechanism of this type. Chalmers, King and Shuttleworth (1948) observed 
that scratches on a silver surface filled up when it was heated in air near to its 
melting point. they suggested that the most important mechanism for transfer of 
atoms was surface diffusion. Kuczynski (1949) placed a number of c3pper and 
silver spheres (-100 p diameter) on a plane surface of the same mctal and heated 
them in an inert atmosphere near to their melting points. The crack between 
the sphere and the plane gradually filled up, and this was attributed to volume 
diffusion of vacant lattice sites. 

Kuczynski derives a relation between the rate of filling up of the cracksand the 
self-diffusion coefficient of the metal. He shows that, for copper and silver, 
the self-diffusion coefficient derived from his experiments has the same activation 
energy as that derived from experiments with radiaoctive tracers, and has roughly 
the same magnitude. Kuczynski also claims to be able to distinguish between 
the mechanisms of volume and surface diffusion by a difference in the dependence 
of the size of the neck on the time. This is probably not cxrect as Kuczynski's 
theoretical treatment of the problem is over-simplified. A new treatment by 
Cabrera shows that the dependence of the size of the neck on the time is the same 
for both mechanisms, and that surface diffusion can only be distinguished from 
volume diffusion by its lower activation energy.* Thus, because of the numerical 
agreement between the activation energies, the present authors conclude that, in 
Kuczynski's experiments, the dominant mechanism for transp3rting matter over 
short distances at sintering temperatures is volume diffusion. Chalmers, King 
and Shuttleworth's observation is presumably due to volume diffusion also. 

However, it is shown later in this paper that plastic flow and the interaction 
of one pore with its neighbours are vital to the rapid increase of density during 
sintering. These two factors were missing in Kuczynski's experiments, SO that 
volume diffusion will not necessarily be the only mechanism causing sphering of 
the pores during sintering. In  fact, differential flow can also lead to sphering, 

* The authors are greatly Indebted to Dr. Cabrera for privately communicating these results. 
5 5-2 
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and may possibly be the dominant mechanism for sphering, particularly in the 
final stages. For, anticipating later sections, the inward pressure due to surface 
tension will be greatest in the neighbourhood of those parts of a pore which have 
the greatest concavity, and so the greatest flow would be expected in these parts. 
When a sphere stands on a plane, the shear stress will be almost zero everywhere 
except in  the neighbourhood of the neck. Thus, although the critical shear 
stress is probably exceeded in the neck and the material there plastic, the bulk of 
the sphere (and the plane below) will not be able to flow plastically, and the 
constraint thus imposed will effectively prevent flow occurring. 

53.  T H E  D R I V I N G  F O R C E  AND R E S I S T A N C E  T O  D E F O R M A T I O N  

(i) The Driving Force is Surface Tension 

Shaler and Wulff (1948) showed experimentally that forces as small as those 
of surface tension may cause sintering. T h e  surface tension acting in the surface 
of a pore of radius 3 0 p  in a copper compact is equivalent to a negative (inward) 
pressure of about one atmosphere inside the pore. Shaler superposed upon the 
surface forces a gas pressure of one atmosphere and measured the change of density 
of a compact. An unpressed copper compact was heated in an inert gas until 
the pores sealed and an equilibrium relative density equal to 82%0f the density 
of solid copper was obtained ; in this state, because of the surface tension, the 
gas pressure inside the pores was greater than that outside. The  gas pressure 
outside the compact was then remove4 and, under the driving force of one atmo- 
sphere pressure, the density decreased to a new equilibrium relative density of 
60% in less than eight hours. 

I n  commercial practice metal 
powders are pressed at 20-30 tons/in2 before sintering, and this will cold-work 
the powder. It has been suggested that the strain energy of cold-work is the 
driving force for sintering. This is not very likely since, at high temperatures, 
recovery and recrystallization occur in a few seconds, and any strain energy will 
be dissipated before it can be used to aid sintering. It should be noted that 
Shaler’s experiment above was carried out with an unpressed powder. 

Some authors have suggested other forces. 

(ii) The Existence of an Equation of State 

I n  a compact formed from spherical particles in contact, an increase of density 
will occur only i f  the centres of the particles get closer. This can occur either by 
a substantially radial flow of material into the pores, or by transfer of material 
away from the areas of contact. Kuczynski’s (1949) photo-micrographs seem to 
indicate that, after a sphere has been heated in contact with a plane for a number 
of hours, material is transferred from the plane towards the area of contact ; the 
sphere is left standing on a pedestal. From this, and the fact that diffusion is 
incapable of explaining large increases in density, it is concluded that flow of the 
material on a macroscopic scale is required to explain increases in density. 

During sintering, the temperatures are high and deformation occurs slowly 
compared with the rates of recrystallization and recovery. The  material will 
anneal as deformation proceeds, its mechanical state will be the same at all times, 
and no strain hardening will occur. I n  these circumstances the rate of strain v d  
depend only upon the stress and not upon the strain or the previous history of 
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the  material. The equation which connects the rate of strain with the stress 
a t  COnstant temperature is an equation of mechanical state which defines the 
resistance to deformation. 

While the energy released by recrystallization and recovery is irrelevant for 
determining the driving force, the rate at which these, or other annealing pro- 
cesses, occur will be factors which determine the rate of strain corresponding to 
a given stress, i.e. the equation of mechanical state. 

The theory of sintering will be developed on the assumption that deformation 
is due to surface tension and that the material of the particles has homogeneous 
mechanical properties defined by an equation of state. I t  will be assumed that 
purely hydrostatic stresses and strains are unimportant in producing large 
deformations by flow ; thus, the equation of state will be assumed to connect the 
rate of shear strain with the shear stress; for simplicity in the calculations, the 
marerial will also be assumed to be incompressible. The actual form of the equation 
of state is a matter for future experiments: glass is known to have a Newtonian 
viscosity, the rate of shear strain being proportional to the shear stress, while it is 
deduced from sintering experiments that crystalline metals should show a yield- 
point phenomenon which must be taken into account. 

Both W. D. Jones (1937) and Bangham (1947) have previously recognized 
that sintering probably involved plastic flow. 

$4. THE K I N E T I C S  OF S I N T E R I N G  

(i) Experimental Data 
When metals are sintered large increases of density can occur in very short 

times. A compact of tungsten powder heated to just below its melting point 
has all its linear dimensions decreased by 17% in 15 minutes (Smithells 1945). 
Shaler (1949) finds that the relative density of an  unpressed powder of copper 
increases from 50% to 95% after heating for six hours at 930"c., a decrease in 
linear dimensions of 24%. 

Shaler and his collaborators (Shaler and Wulff 1948, Shaler 1949, Udin, 
Shaler and Wulff 1949) have attempted to develop a theory of sintering based 
upon Frenkel's ideas (1945) concerning the viscosity of solids. They have 
performed three important experiments in which they try to show that copper 
has a Newtonian viscosity at high temperatures. 

I n  the first set of experiments unpressed compacts of spherical copper particles, 
all of about 110 p radius, were heated in a vacuum for various periods up to 
45 minutes ; the density increased by amounts up to 30 %. 

I n  the second set Shaler bored cylindrical pores of radius 170 p slang the axis 
of a wire of radius 1,650 p and measured the decrease of pore radius after heating 
to 1,000"~. for 48 hours. The results were erratic, and of three specimens 
measured the radius of one pore decreased monotonically by 8y0, while the radii 
of the other two pores increased by 5% during the first 24 hours and then decreased 
to their original value during the second 24 hours. 

I n  the third set of experiments Udin et al. suspended a series of weights by 
means of fine copper wires (radius 36p and 64p) which were then heated to temper- 
atures betwen 950" c. and 1,050" c. They found that if there were no weights 
on a wire it shrank because of the surface tension acting upwards, but if the welght 
overbalanced the surface tension the wire stretched. They measured the final 
strain of wires heated for between one and five days, but their technique did not 

The melting point of copper is 1,083"~. 
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enable them to measure the extension of one wire as a function of time. At 
1,050" c. surface tension acting alone caused the wire to contract 0.4% in one day. 

By finding the weight necessary to balance the surface tension Udin was able 
to calculate the surface tension of solid copper. He gives a value 1.4 x lo3 dyne/cm, 
This value agrees roughly with the theoretical value of the surface free energy per 
unit area derived by Huang and Wyllie (1949), viz. 1,820 erg/cm2. 

(ii) Previous Theories of Sinterang 
Frenkel (1945) supposed that the increase of density during sintering occurs 

because both amorphous and crystalline materials behave at high temperatures 
as though they were liquids with Newtonian viscosities ; the driving force was 
supposed to be due tQ surface tension. He  suggested that this viscosity arose 
because of the existence of vacant lattice sites in thermodynamic equilibrium, 
and predicted a value of the coefficient of viscosity ?=kT]DG, where T is the 
absolute temperature, D is the coefficient of self-diffusion and s3 is the volume 
per atom. Using the data of Maier and Nelson (1942) for D, Frenkel's formula 
predicts that the viscosity of copper at  1,000" C. is 3.1 x lo3 poise *. However, 
Nabarro (1948) showed that Frenkel's calculation of the coefficient of viscosity 
was not correct for crystalline materials, and that a crystal which contained no 
imperfections other than vacant lattice sites would not be viscous. On the other 
hand, if the crystal had a mosaic structure it would show a Newtonian viscosity, 
and the coefficient of viscosity would be greater than that given by Frenkel's 
formula by at least a factor Z2/S2-108, where Z is the distance between mosaic 
boundaries. 

Shaler and his collaborators have followed Frenkel's ideas and performed 
experiments which throw some light on the flow of metals at very high temperatures. 
Shaler concluded from his experiments that copper has a Newtonian viscosity 
small enough to explain sintering: the present authors conclude from the same 
experiments that the sintering of copper cannot be explained in terms of viscous 
flow. 

T h e  Apparent Viscosity of Copper at 850" C. (in poise) 

Shaler and Wulff from sintering? 
Udin et al .  from creep 1 
IVabarro's theory of vacant lattice site diffusion 

2.2 x 10' 
7.8 x 10" 
3.4 x 1012 

The  argument may be put qualitatively in the following way. If copper 
behaves as a viscous liquid with surface tension, then, provided their radii are 
equal, the rate at which a pore in  a porous mass closes should not be expected to 
differ by more than a factor 10 from the rate at which an isolated pore closes, o r  
the rate at which an unloaded wire contracts. But the experiments show that 
the radii of pores in a powder compact decrease by 20y0 in 45 minutes at 85O0C., 
while the radii of isolated pores showed no systematic decrease after heating for 

* Accordmg to Kaye and Laby (1944) the viscosity of Lyle's golden syrup is 1 . 4 ~  lo3 poise at 
120 s + The value given is derived from data read from Shaler and Wulff's curves and is calculated by 
using the theory of 5 5 (iii). Shaler and Wulff derive a value 5 x loE secjcms ; the dunensions of 
the poise are gm/cm/sec. 

1 Udin uses a formula due to Frenkel which is in error by a factor 2. His iesults should be 
expressed in the form ~=260 exp 59,00O/RT. 
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48 hours at 1,O0Ooc., and the length of a free wire only decreased by 0.4% per 
dav at 1.050' C. 

TIE argument can also be expressed quantitatively by estimating the apparent 
viscosities for the various experiments. This is done in the Table, where the 
values are compared with the order of magnitude expected on Nabarro's theory ; 
no estimate can be made in the case of the single-pore experiments, but the results 
are not inconsistent with those derived from Udin's wire-pulling experiment. 
The sintering experiment gives a value lo4 times smaller than the wire-pulling 
experiment, and it is evident that the flow observed by Udin does not contribute 
appreciably to sintering ; it probably arises from the Nabarro mechanism. 

(iii) The Mechanical Propertaes of Copper at High Temperatures 
No experiments have been made with the primary object of determining the 

deformation of metal specimens as a function of time and stress at sintering 
temperatures. It is therefore necessary to deduce the mechanical properties a t  
these temperatures from more or less indirect evidence. 

We have already seen that at the low stresses used in the wire-pulling experi- 
ments copper probably has a Newtonian viscosity. On the other hand, the 
sintering experiments cannot be so explained: for these the effective stress is 
somewhat higher. 

I t  appears that no other experiments have been made on the mechanical 
properties of metals at high temperatures. However, Chalmers (1936) has 
measured the mechanical properties of tin at room temperature (212" C. below the 
melting point), He finds that for low stresses viscous flow occurs, the viscosity 
being 1015 poise, but that when the maximum shear stress exceeded a critical 
value of lO7dynesjcmZ a vastly increased rate of deformation occurred, viz. a 
linear rate of strain of 15% per day at a shear stress of 1.4 x l o7  dynes/cm2. 

The authors suggest that the mechanical properties of copper at high temper- 
atures are similar to those found for tin, and that the important mechanism for 
deformation during sintering occurs when the yield stress is exceeded ; Udin did 
not observe the yield stress because his stresses were too low. It will be shown 
that this view can explain the three experiments described in $4 (i), and in 8 5 (vi) 
it will be shown that the critical shear stress for copper at 850" C. should be at least 
2.5 x 10" dynes/cm2 or possibly greater by a factor less than 5 .  At room temper- 
ature the critical shear stress is 1 O7 dynes/cm2. 

I t  is convenient at this point to formulate mathematically the two equations 
of mechanical state which will be used in the subsequent mathematical treatment. 
For a Newtonian viscous solid such as a glass the rate of shear strain i is propor- 
tional to the shear stress T :  

r=r)s, . . . . . . (1) 

where 7 is the coefficient of viscosity. 
straight line through the origin. 
appropriate to a crystalline metal, 

This is represented in Figure 1 by the 
For a Bingham solid (Burgers 1939)) which is 

and . :. . . (2) 

where T~ is the critical shear stress and changes sign so as always to have the same 
sign as 4 (see Figure 1) ; for simplicity anisotropy of plastic properties will be 
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neglected. This relation between T and s is the simplest which exhibits a yield 
point, and the instantaneous viscxity 7 = TIS decreases as the speed of deformation 
increases. 

(iv) Interpretation oj Experiments on the Bingham Solid Model 
What really has to be explained is the qualitatively different behaviour of 

isolated pores and pores in the neighbourhood of other pores. I n  succeeding 
sections the problem is developed mathematically ; here only a qualitative account 
is given of how this difference is explained by the hypothesis that a yield point 
exists. 

I n  the neighbourhood of an isolated pore the shear stress caused by surface 
tension decreases with distance from the centre of the pore. Thus beyond a 

Figure 1. The relation between the rate of shear strain and the shear stress for a 
viscous solid and a Bingham solid. 

certain distance the yield stress is not exceeded, and no flow can occur because 
the material beyond cannot flow. On the other hand, in a porous compact the 
plastic regions surrounding each pore will overlap, and flow will occur because 
the yield stress is exceeded everywhere ; the interaction between pores is vital. 

$5. THE T H E O R Y  O F  S I N T E R I N G  

I n  accordance with the discussion given in $3,  it will be assumed that defor- 
mation during sintering is due to surface tcnsion and that the material of the 
particles has homogeneous mechanical properties defined by an equatim c f state 
connecting the rate of (octahedral) shear strain with the (octahedral) shear stress. 
T h e  material will also be assumed to be incompressible. Further, in order to 
arrive at definite quantitative results and to simplify the calculations, it has been 
convenient to consider a special model in which all the p r e s  are isolated equal 
spheres distributed at random in the real solid material. This assumptian is 
considered at the end of sub-section (1) and does not essentially change the character 
of the results. 

In the next sub-section results independent of the form of the equation of 
state are deduced and the general nature of the flow during sintering is indicated; 
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-the model used for making detailed calculations is described and the general 
equation of energy for the flow is set up. Two equations of state, that for a viscous 
solid and that for a Bingham solid, are considered in detail in sub-sections (iii) and 
(iv), and equations giving the density as a function of the time are derived. In  
sub-section (v) the effect of an initial viscosity is considered. Finally, in sub- 
section'(v1) the results are compared with the experiments described in § 4 (i) and 
an estimate made of the critical shear stress for copper. 

(1) Conclusions Independent of the Form of the Equation of State 
Consider a compact in which all the pores are spherlcal and of equal radius 

r,. The surface tension y acting in the surfaces of the pores is equivalent to a 
pressure - 2y/rl inside all the pores ; this produces shear stresses in the material 
and the pores close. Now because the material is supposed incompressible, the 
application of an additional hydrostatic pressure to the inside of all the pores and 
to the external surfaces of the compact will cause no strain and hence no change 
in the rate of strain. If this additional presspre is + 2y/rl ,  the resultant pressure 
will be zero inside all the pores and -t 2y/r1 on the external surfaces. Thus the 
effect of surface tension in closing the pores is equivalent to the application of an 
external pressure to the surface of the compact. Incompressibility is not essential 
to this result, it is sufficient that the rate of strain be independent of the hydro- 
static pressure. 

If attention is directed not to the detailed nature of the flow in the immediate 
vicinity of a pore but to the behaviour of volume elements that contain a large 
number of pores, then the compact can be regarded as forming a homogeneous 
continuum. When a hydrostatic pressure is applied to the surface of the con- 
tinuum, its volume slowly decreases ; the volume of the real material remains 
unchanged, but because of shear stresses its shape changes and it flows into the 
pores. Now the application of a hydrostatic pressure to the surface of a homo- 
geneous continuum produces an equal uniform hydrostatic pressure at all points 
throughout the whole volume, independently of its shape or size (Love 1944). 
Thus the rate of increase in density of any element of volume will be uniform 
throughout the whole body and the rate of sintering will be independent of the 
shape or size of the compact.(cf. 5 2) .  'A consequence c f  this uniform contraction 
is that to an observer situated on a pore, and moving with it, all distant pores will 
appear to approach with a velocity proportional to their distance (see Eddington 
1933). During this flow the size of the pores will decrease, their centres will 
approach each other, but the total number of pores will remain unchanged. 

Even when the pores are not equal in size and are not spherical the rate of 
increase in density will be uniform throughout the whole compact, provided the 
distribution of pore shape and size is the same in all parts of the compact. For 
if a mean pressure 2 y / f ,  is applied to all surfaces of the real material, where f ,  is 
some mean radius of curvature of all the pore surfaces, then the resultant forces 
on the real material are a pressure 2y,G, over the external surface of the compact 
and a distribution of pressure over the surfaces of the pores the effect of which 
is zero on the average. This problem is discussed in more detail by Mackenzie 
(19.50). When the pores are not spherical flow will contribute to their 
sphering. When the pores are not equal in size the small Pores Will shrink and 
disappear more rapidly than do the larger pores, SO that the total number of Pores 
will decrease with time of sintering. 

' 
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(ii) The Model 
The problem is to deduce the properties of the equivalent homogeneous 

material from the properties of the real material and the number and the size of 
the pores. A convenient self-consistent method of approximation has been 
indicated by Frohlich and Sack (1946); their method is equivalent to a perturba- 
tion calculation and is valid when the volume of the pores is sufficiently small 
compared with the volume of the material. This method is used in the 
following calculations. 

Every pore of radius rl will be surrounded by a spherical shell of the real 
incompressible material, out to some radius yo which will be chosen later 
(Figurk 2) .  When an external pressure is applied there will be certain stresses 

Figure 2. The model. The reaction of material outslde the sphere of radius r2 IS  calculated 
by replacing it by an equwalent homogeneous continuum. 

acting across the outer boundary of this shell ; these stresses represent the combined 
effect of the external pressure and the interaction of the rest of the porous medium. 
If these stresses were known, the flow of the material inside the shell could be 
calculated and the decrease in volume determined; then by summation for all 
pores the total decrease in volume is known since the real material is incom- 
pressible. T h e  approximation consists in replacing the material outside the 
spherical shell (including the pores it contains) by an equivalent continuum. 
For this approximation to be consistent it is necessary that both the macroscopic 
flow and the density of the equivalent continuum should not be altered by the 
presence of the pore and its surrounding shell. 

NOW the stress in the continuum is everywhere a hydrostatic pressure equal 
to the applied pressure. Thus the first condition of consistency implles that the 
stress at the outer surface of the spherical shell containing the pore is a pressure 
equal to the applied pressure, or the rate of increase of density of the continuum: 
is the same as that of the pore and its surrounding shell when the same pressure is 
applied to its outer surface. T h e  second condition of consistency determines r2; 
if p is the density of the compact relative to that of the real material, then the 
condition that the pore and its shell have the same density as the compact is 

p = 1 - (r1/r2)3. . . . .. . (3) 
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The approximations of this treatment are valid when rl/r2 is small compared 

with unity, and it is not clear how accurate the treatment will be when the pores 
are close together. However, the results are correct as p tends to zero, so that 
the method should give the correct order of magnitude for all densities 
(Mackenzie 1950). 

The problem has now been reduced to the calculation of the rate of decrease 
in radius r1 of a spherical pore, surrounded by a shell of incompressible but 
shearable material, when a pressure - 2 y / r ,  is applied inside the pore. I n  the 
case of an isolated pore the outer radius r2 would be infinite; the finite value for 
r, takes into account the interaction between the pores. The rate of closlng will 
be calculated by equating the energy dissipated by the flow of the material in the 
shell to the work done by surface tensim; the kinetic energy of the material will 
be negligibly small, so that it is passible to treat the problem as one of a steady 
state. 

Consider a regular octahedron in which the line joining a pair of opposite 
vertices is directed along a radius of a pore. Then when a hydrostatic pressure is 
applied inside the pore the flow of material is radial and the faces of the octahedron 
are subject only to shear strain-the octahedral shear strain. For a Bingham 
solid the instantaneous viscosity 17 is a function of the shear strain. Since the 
latter is a tensor quantity, some combination of the components must be chosen 
on which 17 is to depend. By analogy with the theory of plasticity (Nidai 1937). 
it will be assumed that at constant temperature the equation of state connects. 
the rate of octahedral shear strain with the corresponding octahedral shear stress. 

If the rate of radial strain is E ,  the condition of incompressibility shows that 
the rate of strain in any direction perpendicular to the radius is -+;; these are  
three principal directions of stress and strain. The corresponding octahedral 
shear strain is 

s = d 2 ; .  ...... (4) 

The rate of dissipation of energy in any element can be found from the theory of' 
viscosity as given, for example, by Lamb (1932). I n  Lamb's notation U=;, 
b = c = - 4 i, f =g = h = 0, and the rate of dissipation of energy per unit volume * is 

E = 3 ; 2 7 7 .  ...... (5) 
The viscosity may be a functio? of position. The corresponding results for a 
cylindrical pore are S=2; and E=4277. The relations have been obtained by 
Eshelby (1 949) by elementary means. 

If zil is the radial velocity of the surface of the pore, surface tension does work 
at a rate - 4i~r:u, 2y/r,,  and on equating this to the energy dissipated throughout 
the whole volume of the shell 

11 

11 
- 2yr,u, = 3f r2i27(i) dr. ...... ( 6 )  

Now, since the real material is incompressible, the radial velocity at any radius is 
inversely proportional to the square of the radius. Thus u=u,r:lr2 and the raJe 
of radial strain 

E = - = - -  . du 224,~:. ...... (7) 
dr r3 

* Fre&el (1945), treating the S m e  problem, assumes wrongly that b=c=O, SO that his result is 
two-thrds of ours. 
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When ~ ( 2 )  is given explicitly, ( 6 )  and ( 7 )  can be solved for u1 and, by means of 
(3), a differential equation for p as a function of time derived. This is done in the 
following sub-sections for 7 =constant (viscous solid) and q =qm + T J ~  (Bingham 
solid). 

(iii) The Sintering of a Viscous Solid 
For a solid which has a Newtonian viscosity, 7 is independent of the rate of 

On substituting (7) into ( 6 )  and making use of (3) it is found that strain. 

....... (8) --rl 
27 P 1- 

For an isolated pore p = 1, so the factor l /p  represents the effect all the other pores 
have on the rate of closing of one pore ; since P will always be greater than 9 in 
a powder compact, a pore in a compact will never close at more than double the 
rate of an isolated pore. Equation (8) is also appropriate to the closing of a 
cylindrical pore. 

I n  experiments on sintering, the compact is usually held at constant temperature 
and the density measured as a function of time. The volume of real material 
in the compact does not change, nor does the total number of pores, if they are all 
equal. It is therefore convenient to obtain a relation between the relative density 
and the time of sintering in terms of n, the number of pores per unit volume of the 
real material, and y and v. The volume of each pore is 4rrr,3/3, so that equation (3) 
-Jives 
U 

. .  
and, since u1 = &Jdt, 

When this is integrated the time is obtained as a function of p, 

...... (9) 

..... 

and p is then determined as a function o f t  by inversion. 
is easily evaluated by means of the substitution x3 = (1 -p ) /p  and the result is 

The  indefinite integral 

1 1+%3 2 x -  1 -In- -43tan-1- 
2 ( 1 i - 4 3  4 3  . 

I n  Figure 3 the curve a = O  shows p as a function of the reduced time 
yn*( t - to) /q .  The zero from which the time of sintering of any particular 
compact is measured is determined by the initial density, and in the Figure t =to 
is chosen, arbitrarily, to correspond to p = 0. An increase in the number of pores 
per unit volume of material makes the abscissa scale correspond tQ a shorter time 
but does not change the curve. I t  is clear that sintering to unit relative density 
occurs in a finite time. If the reduced time corresponding to a given density is 
read off the curve and plotted as a function of ( t - t o )  found experimentally, a 
straight line of slope yn*/7 will be obtained; n can be estimated from the size 
and packing of the particles and so yJq can be deduced. 

Shuttleworth (1949 a) has derived equation (10) by an alternative method 
involving the same assumptions. The  problem of the steady flow of a viscous 
Jiquidismathematically identical with the determination of the elastic displacement 
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in an incompressible solid, and so it is possible to solve the viscous problem 
by means of the known solution to the elastic problem. T h e  probIem is also 
discussed in more detail by Mackenzie (1950). 

(iv) The Sintering of a Bingham Solid 
T h e  instantaneous viscosity of a Bingham solid is found from (2) and (4)” 

to be 

and if flow occurs at all, rc and i have the same sign. 
7 into ( 6 )  and using (7), it is found that 

7=7CO+TCld2& 

Substituting this value of- 

...( 11) 

and or -ul has the same sign as rC only if 

2 ~ l r ~ > 3 2 / 2 ~ ~  1n (y2/yl). . e .  *. . (12). 
A pore will not close unless this condition is satisfied. 

I a c .  

n a -  

Q. 

a = ~2 (314 NF rc/2 mnn 

Reduced Time 712fi(t-&,)/77~ 

Flgure 3 .  The relative density of a compact as a function of the reduced tme when the real materiar 
The curve a=O applies when the real material. of the compact behaves llke a Bingham solid. 

behaves llke a viscous solid. 

Equation (12) may be written in the form 

2Ylr1>1/2TcIn{1/(1 -PI>* 
Thus for a given initial density there is a critical size of pore such that a inaterial 
containing smaller pores will increase in density while one containing larger pores 

. . . . . . (12a) 

will not. 
A Dore in a Bingham solid will behave quite differently according to whether 

it is niar or far from other pores. An isolated pore will not close since yJr1 is 
large, whilst in a compact the interaction between the stress fields of the pores is 
vital and sintering will occur because of the small value of the ratio rz/rl. The 
corresponding criterion for closure of a cylindrical pore is 

This criterion is applicable to Shaler’s experiments on isolated cylindrical pores 
because the pressure due to surface iension in the outer surface (including the 
ends) is small compared to pressure at the inner surface. 

r/r1>2TcIn (yzir1). ......( 13) 
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Using equations (3) and (9), the rate of increase of density of a compact is 
given by 

where 

Th i s  equation was integrated numerically and, in Figure 3, p is plotted as a function 
of the reduced time yn*( t - to) /v ,  for a number of values of the parameter a. 
'The value a = 0 applies to a viscous liquid, and increasing values of a correspond 
to increasing values of the yield stress T~ or to decreasing values of n. 

I n  Figure 4 the function 

-f(p)=(lip-1)*1n Ui(1 -PI) 
i s  plotted as a function of p. 
only when af(p) IS less than unity. 
for all p and sintering to unit relative density always occurs in a finite time. 

From equation (14) it is clear that sintering occurs 
When a is small this condition is satisfied 

When 

I*r 

Completely Plastlc Flow / 
N u  Flaw 

c r  
Mixed Floh 

02 

Figure 4. The  functionf(p) which determines the character of the flow in a compact. 

a is greater than 0.89 the rate of sintering decreases to zero as the density increases 
towards a value such thatf(p) = l / a ;  if the initial relative density is less than 0.94 
this limiting relative density is approached asymptotically. If, however, with the 
same value of a,  the initial relative density is increased (e.g. by pressing), then at 
some value greater than 0.94 sintering will again begin and the compact will 
sinter to unit relative density in a finite time. This second branch of the curve 
begins at p = 0.998 for a = 1.2, and is not shown in the Figure. The  fact that 
f(p) tends rapidly to zero as p tends to unity indicates that very small pores will 
close even when they are at large distances apart. 

(v) The Effect of an Initial Viscosity 
It was assumed in the last sub-section that when the shear stress was less 

then T~ no movement occurred. This is not strictly true, and in this sub-section 
the  effect of an initial viscosity is considered. It will now be supposed that for 
7<rC the rate of shear strain is proportional to the shear stress, the constant of 
proportionality being l/vo, corresponding to an initial coefficient of viscosity 701 
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while for 7>rC the slope of the line defining the equation of state is assumed to 
be l/qco, as for the Bingham solid just considered. The initial viscosity T~ will be 
at least ten thousand times larger than qoD for copper. 

I f  the critical shear stress is nowhere exceeded, i.e. sl<r,/vo, the flow will be 
viscous everywhere and the equations of § 5 (iii) will apply ; however, there will 
usually be a transition boundary inside which the material is flowing plastically, 
and outside which the material is flowing viscously. At this boundary (of 
radius Y, )  B = ~ , / r ] ~  and equations (4)  and (7)  give 

. . . . (15) 

which determines the radius of the boundary. If r, d r ,  .the flow will be viscous 
everywhere and equation (8) shows that this will be so for r,> 1/2y/r ,p  ; if Y, 2 r2 
the flow will be plastic everywhere and the equations of the last sub-section apply. 
On the other hand, if rl <rc  <r2 there is a transition boundary and (15) together 
with ( 3 )  and (9) show that 

where a = 2 / 2 ( 3 / 4 ~ ) * ~ , / 2 y n *  is the parameter defined previously. Practical 
values of a lie in the neighbourhood of unity, so that for p t 0 - 9 9  a comparison 
with equation (11) shows that the velocity when any part of a compact flows 
viscously is less than 1 % of the initial velocity when the flow is fully plastic. 
The neglect of the initial viscosity therefore seems justified. 

Using the equation of energy as in the previous sub-sections, the condition 
that the flow shall be fully plastic is found to be 

] 20. ...... 1 - a T p n E 1  (1 -PY 1 +*- 1 
T o  1-P 

This corresponds to equation (12) expressed in terms of p. The additional term 
involving 7l0 has the same sign as the logarithmic term, so that the curve defining 
the transition to mixed flow lies very slightly above the curve drawn in Figure 4, 
except for values of p very close to unity, where the new curve rises to infinity. 
This rise simply means that when p is very close to unity the flow at the outer 
boundary always becomes slow enough for an outer region to be viscous. Thus 
the previous discussion of Figure 4 applies unchanged except that there is always 
mixed flow ultimately, and sometimes it can become plastic again before the final 
mixed flow. Further, the barrier can always be penetrated slowly since the flow 
is partly viscous in this region. 

(vi) Compilrison of Theory with Experiment 
It is to be expected that the viscous solid model will explain the sintering of 

glass, but there appear to be no data on the increase in density of glass compacts 
as a function of the time of sintering. 

It is possible to explain the experiments of Shaler and Udin discussed in 
$4 (1) if it is supposed that at high temperatures copper behaves like a Bingham 
solid, and a rough estimate can be made of the yield stress rC by using the data for 
these experiments. 

I n  Udin’s wire-pulling experiments the greatest simple tension that was 
applied to the wires of 36 p radius was 8.1 x IO5 dynes/cm2 ; when corrected 
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for the surface tension stress this corresponds to an octahedral shear stress 
of 2.0 x lo5 dynes/cm2. At this stress yield has not occurred and, therefore, 
7,>2'0 x 105dynes/cm2 at 1 ,000"~.  

Rapid sintering occurred in Shaler's experiments at 850" c., so that the yield 
stress must have been exceeded. For y = 1,500 dynes/cm. equation (12) leads to 
T ~ <  2.6 x lo5 dynes/cm2. Since the experiments lasted f3r only a short time, and. 
no large increase in density occurred, the pores would not be spherical. This 
would increase the pressure due to surface tension by some factor which is probably 
less than 5 .  Therefore the yield stress at 8 5 0 " ~ .  might well be greater than 
2.6 x lo5 dynes/cm2. 

Shaler found that cylindrical pores drilled in a copper wire did not close 
when heated to 1 ,000"~.  It follows from equation (13) that T ~ > O * Z X  105 
dynes/cm2; in fact, if ~ ~ > 2  x lo5 dynes/cm2 the whole of the wire must have been 
flowing viscously. 

At room temperature the critical shear stress of copper single crystals is 
lo7 dynes/cm2. 

$6. THE I N F L U E N C E  O F  GAS O N  S I N T E R I N G  

Metals are often sintered in atmospheres of inert gases, and even when the 
sintering is carried out in a vacuum the pores, once closed, will contain gases 
evolved from the metal. Sometimes decomposable carbonates are deliberately 
added to glasses before sintering in order to obtain low-density products with 
bubble structures. 

Gases can affect sintering in two ways (a)  by their chemical effect on the 
surface of the powder, or (6) by their hydrostatic pressure. Jordan and Duwez 
(1949) find that copper sinters more quickly in hydrogen than in a vacuum. 
This is probably due to the reduction of copper oxide on the surface of the powder 
by the hydrogen. 'The  changes that occur when metal surfaces are heated in 
inert gases have recently been reviewed by Shuttleworth (1948). 

I n  this paper only the hydrostatic effects of gas pressure will be discussed. 
The  pressure due to surface tension inside a pore of 3 0 p  radius is about one 
atmosphere in the case of copper, so that even a small gas pressure inside the pores 
will reduce the rate of sintering and may even cause the pores to expand. If P 
is the excess of the gas pressure at the surface of the compact over that inside the 
pores, the rate of sintering when the pores are equal spheres is obtained by 
replacing 2ylr by 2yjr + p  in the expressions for u1 and dpldt. The integrals have 
only been evaluated for the case of a viscous solid, but the results are qualitatively 
the same whatever form the equation of mechanical state takes. 

The  gas pressure inside a pore will vary in a manner that depends on the 
amount of gas initially present in the pore, the size of the pore and the rate at which 
it closes. Two cases will be considered in detail : (U) a constant pressure dflerence 
between the pores and the surface of the compact, and (6) a constant mass of tPS 
in each of the pores but no pressure outside the compact. 

(i) Constant Pressure inside the Poi,es 
If large quantities of gas can dissolve in the metal and the rate of diffusion 

is large enough to ensure that equilibrium is always maintained between the gas 
in the pores and that in the metal, or if a reversible chemical reaction involving 
the gas occurs at the surface of the pores, then the gas pressure inside the pores 
will remain constant when the size of the pore changes. A constant pressure 
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difference also occurs when a constant pressure is applied to the surface of the 
compact and there is no gas pressure inside the pores. 

For a viscous solid y must be replaced by 

Y(1 +Pr1/2y) = y { l  +b(l -p)*/p”, 
where b =(3/4x)*(p/2yns), so that instead of equation (10) 

dP . . . . . . (18) 
““(&to)=-(-) 2 3 5 8  j 

rl 3 47T 1 (1 -p)*p+[l +b(l -p)”pq. 
After the substitution x3 = (1 - p ) / p  the indefinite integral is 

2b+1 1 1 + x 3  2/3tan-l(2x-l)/2/3 3b2 1 +bx 
-In - - ln-. b 2 + b + l  2 (1 + x ) ~  b ” + b + l  b3-1  i + x  

In Figure 5, p is shown as a function of the reduced time, yn*((t-tt,)/q, for a 

Reduced Time Tns ( t - t , ) / T  
Flgure 5 The relatlve denslty of a compact as a function of the reduced time when various constant 

pressures are applied inside the pore, or outside the compact, and the real material behaves 
like a VISCOUS solid 

number of values of the parameter b. The zero of time has been chosen so that 
t = to when p = 1 ; when the curves are used to predict the behaviour of a compact 
the zero is decided by the initial density of the compact. The parameter b 
is proportional to the pressure difference p between the pores and the 
outside of the compact; when b = 1, 12s = 100 cm-I and y = 1,500 dynes/cm., 
p = 0-5 atmosphere. Positive b corresponds to an externally applied pressure 
and negative b to a pressure inside the pores. 

For b positive the compact sinters t o  unit density in a finite time and the 
application of a few atmospheres pressure to the outside of the compact reduces 
the time of sintering to about one-quarter of that required when no pressure is  
applied. An even more rapid increase in the rate of sintering might be expected 
if a few atmospheres pressure were applied to the outside of a compact of a material 
for which the equation of state is similar to that for a Bingham solid. In  particular, 
if the parameter a is large it should be possible to prevent the increase of density 
from stopping at some finite value less than the theoretical density. 

When b is negative there is a critical density at which the pressure of the gas 
inside the pores just balances the surface tension. This occurs when -9 =2y/r, ,  
and the corresponding critical density can be calculated from equation (9)- 
When the initial density is greater than the critical density the pressure due to 
surface tension always overbalances the gas pressure, and sintering to unit relative 
density occurs in a finite time. On the other hand, when the initial density is 

56 PROC. PHYS. SOC LXII, 1.2-B 
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less than the critical density the pores expand and continue to do so at an ever 
increasing rate. However, the density will never decrease as rapidly as shown 
in Figure 5 ;  for the expansion will be controlled by the rate at which gas can 
diffuse into the pores and the later stages of the expansion will take place more 
as though there were a constant mass of gas in the pores. 

(ii) Constant Mass of Gas inside each Pore 
If an inert gas such as nitrogen is trapped in a compact during pressing it will 

not dissolve or diffuse appreciably during sintering and the mass of gas inside 
each pore will remain constant. The pressure exerted by such gas will vary 
inversely as the volume of the pore, and always opposes the pressure due to 
surface tension ( p  is always negative). 

For a viscous solid y must be replaced by 

where ro andp, are respectively the initial radius of the pores and the initial pressure 
inside the pores and 

Then instead of equation (10) 

.'. . . . . (19) m" (t-t,) = - 2 3 * e  dP 
rl 3 (G) I (1 -p)*p*[l +Cp%/(l - p ) q  * 

After the substitution x3=(1 - p ) / p  the indefinite integral is 

-In- - - c+ d3 tan-l(2x - 1) /43  c - 1  1 l + x 3  -- 
c3+12 ( 1 + 4 3  c 3 + 1  

c 2  1 X2+C 3(-C)*1nX-(-C)h +--In- -- 
c 3 + 1 2  (1+~3)2 c3+1 ~+(-cy  

for C negative. 
In  Figure 6 ,  p is shown as a function of the reduced time, ynj(t - to)/7 for a 

number of values of the parameter C; the zero of time has been chosen so that 
t =to when p = 0. When these curves are used to predict the behaviour of a 
particular compact, the value of C is determined by the initial pore radius and 
initial gas pressure, and the zero of time is specified by the initial density. The 
parameter C is proportional to the initial pressure inside the pores; when 
C= -1, n~=l/ro=lOOcm-l and y=1,500dynes/cm., -po=O-l atmosphere. 

Corresponding to any initial mass of gas inside each pore, there is an equili- 
brium pore radius at which the gas pressure just balances the pressure due to surface 
tension ; this occurs for rI2 = -p0r03/2y, and the equilibrium density is found from 
equation (9). The density of a compact approaches the equilibrium density 
asymptotically ; it decreases or increases according as the initial density is greater 
or less than the equilibrium density, 

It has been seen that very small gas pressures can have quite large effects. 
When the pores are not all equal in size, or the mass of gas in each is not propor- 
tional to the initial pore volume, then the behaviour of any individual pore map 
be anomalous. In particular, suppose that some soluble gas such as hydrogen 
exerts a constant pressurep inside all pores and that the pores are of various sizes, 
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then the larger pores for which 2 y l r c p  will expand while the smaller pores will 
contract. Thus great care is needed in interpreting experimental results con- 
cerning the change in size distribution of pores during sintering. 

9 7 .  ATOMIC MECHANISMS I N  S I N T E R I N G  
A complete description of the atomic processes by which the deformation of 

metals occurs during sintering must await further experiments. However, the 
speed with which deformation occurs and the presence of a yield point indicates 
that a dislocation mechanism is probably operative. The yield point may 
possibly be due to dislocations breaking away from atmospheres of solute atoms 
which lock them (Cottrell 1948, Cottrell and Bilby 1949); this would imply a 
temperature-sensitive yield point. 

I 

Reduced Time 7 H  ( t - t , ) jT 

Figure 6 .  The relative density of a compact as a function of the reduced time when there is a 
constant mass of gas mside-each pore and the real material behaves like a viscous solid. 

The fact that deformation is caused by the change in surface energy puts a 
restriction on the possible modes of deformation. Deformation cannot occur 
by a series of catastrophic processes in each of which one block of the crystal is 
rapidly displaced with respect to another, since this would increase the surface 
area by the formation of slip lines. In order that appreciable rumpling of the 
surface shall not occur, the rate of deformation must be slow compared with the 
rate at which rearrangement of the surface atoms can take place by means of 
surface and volume diffusion. Hansen (1939) has shown that slip lines do not 
appear on the surface of aluminium when it creeps at high temperatures. 

Shuttleworth (1949 b) has discussed the distinction between the surface free 
energy and the surface tension of solids. These are equal only when the surface 
energy is independent of the strain, a condition which does not, in general, hold 
for solids. 

68. S U G G E S T E D  EXPERIMENTS 
The theory developed in this paper connects the rate of increase of density 

during sintering with the mechanical properties of the bulk material. There are 
no adequate experimental data on either of these aspects of the theory, and some 
experiments which could usefully be carried out are suggested in the following 
paragraphs. 

There is a need for experiments which determine the laws Qf deformation of 
materials at sintering temperatures and under small stresses of a few atmospheres 

56-2 
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or less. The rate of shear strain should be determined as a function of the shear 
stress. This would decide whether or not metals have a yield point at low stresses, 
and whether or not there exists a simple equation of mechanical state in which the 
rate of shear strain depends only on the shear stress and the temperature. These 
experiments should also be of importance for suggesting the mechanisms by which 
deformation takes place at sintering temperatures. 

There is also a need for experiments which determine the density of a powder 
compact as a function of the pore size, the time and the temperature. These 
'experiments could most usefully be done withglass which behaves as a homogeneous 
viscous solid, and with silver for which there would be no complications due to 
oxide films. The  experiments should be carried out in a vacuum and the particles 
used should be equal spheres and thoroughly degassed. 

It would be interesting to see if the results of applying small external pressures 
to a compact are in agrsment with the predictions of the theory. 

J.  K. Mackenzie and R.  Shuttleworth 
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